100=-4.9t^2+16t+300

Simple and best practice solution for 100=-4.9t^2+16t+300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=-4.9t^2+16t+300 equation:



100=-4.9t^2+16t+300
We move all terms to the left:
100-(-4.9t^2+16t+300)=0
We get rid of parentheses
4.9t^2-16t-300+100=0
We add all the numbers together, and all the variables
4.9t^2-16t-200=0
a = 4.9; b = -16; c = -200;
Δ = b2-4ac
Δ = -162-4·4.9·(-200)
Δ = 4176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4176}=\sqrt{144*29}=\sqrt{144}*\sqrt{29}=12\sqrt{29}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-12\sqrt{29}}{2*4.9}=\frac{16-12\sqrt{29}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+12\sqrt{29}}{2*4.9}=\frac{16+12\sqrt{29}}{9.8} $

See similar equations:

| 5000=90n+500 | | 6+6p-1+3=8-p | | (5w/4)-3=7w/6 | | 8.31=3.22+w | | 1/4(u-16)=1/2(6-u) | | 8a+14+(−4a)=30 | | 17=4-(2x-5) | | 4x-2+7=119 | | 4x^2+100=50 | | 175m-125+48,750=51,000-200m | | .2+0.6x=3.8 | | 8y+15+(3y)=−40 | | 7m-2=m+1 | | 0=-76/2x^2+150 | | 13-t-13=16-13 | | -5p+-15/5=-4 | | 8=4x=-10+x | | -8=8p | | 8=4x=-10+1x | | x-2/3+4/9=5x/6 | | 8d-4=20d+20 | | 17x-5x-2x=10 | | n/4-23=-18 | | 65-5x=14 | | 12=-3n | | 40=3t-20 | | 8=4x=1x+10 | | 2K+5=-(k+7)-3k | | 15=-6v+3(v-3) | | 5x+4=10x-12 | | (1+x)^9=1.2 | | 8x+8+(−3x)=48 |

Equations solver categories